Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle
نویسندگان
چکیده
The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images.
منابع مشابه
Investigation of the change in marker geometry during respiration motion: a preliminary study for dynamic-multi-leaf real-time tumor tracking
BACKGROUND The use of stereotactic body radiotherapy (SBRT) is rapidly increasing. Presently, the most accurate method uses fiducial markers implanted near the tumor. A shortcoming of this method is that the beams turn off during the majority of the respiratory cycle, resulting in a prolonged treatment time. Recent advances in collimation technology have enabled continuous irradiation to a movi...
متن کاملFour-dimensional cone-beam computed tomography and digital tomosynthesis reconstructions using respiratory signals extracted from transcutaneously inserted metal markers for liver SBRT.
PURPOSE Respiration-induced intrafraction target motion is a concern in liver cancer radiotherapy, especially in stereotactic body radiotherapy (SBRT), and therefore, verification of its motion is necessary. An effective means to localize the liver cancer is to insert metal fiducial markers to or near the tumor with simultaneous imaging using cone-beam computed tomography (CBCT). Utilizing the ...
متن کاملImage-Guided Robotic Stereotactic Radiation Therapy with Fiducial-Free Tumor Tracking for Lung Cancer
PURPOSE Stereotactic body radiation therapy (SBRT) for early-stage lung cancer can be achieved with several methods: respiratory gating, body frame, or real-time target and motion tracking. Two target tracking methods are currently available with the CyberKnife® System: the first one, fiducial tracking, requires the use of radio-opaque markers implanted near or inside the tumor, while the other...
متن کاملEvaluation of Six-Dimensional Cranial Target Positioning Accuracy in Two Different Immobilization Methods Using Exactrac System
Introduction: The aim of this study was to determine the accuracy of two different immobilization methods in patient positioning in cranial radiotherapy. The six-dimensional (6D) target localization accuracy of using a dedicated stereotactic mask was compared with that of a conventional head mask by the ExacTrac system. Material and Methods: ...
متن کاملFeasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion
BACKGROUND Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the live...
متن کامل